Variation in DNA Methylation Is Not Consistently Reflected by Sociality in Hymenoptera

نویسندگان

  • Karl M. Glastad
  • Samuel V. Arsenault
  • Kim L. Vertacnik
  • Scott M. Geib
  • Sasha Kay
  • Bryan N. Danforth
  • Sandra M. Rehan
  • Catherine R. Linnen
  • Sarah D. Kocher
  • Brendan G. Hunt
چکیده

Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing so, we generated new DNA methylomes for three species of interest, including one solitary and one facultatively eusocial halictid bee and a sawfly. We demonstrate that the strength of correlation between CpG content and DNA methylation varies widely among hymenopteran taxa, highlighting shortcomings in the utility of CpG content as a proxy for DNA methylation in comparative studies of taxa with sparse DNA methylomes. We observed strikingly high levels of DNA methylation in the sawfly relative to other investigated hymenopterans. Analyses of molecular evolution suggest the relatively distinct sawfly DNA methylome may be associated with positive selection on functional DNMT3 domains. Sawflies are an outgroup to all ants, bees, and wasps, and no sawfly species are eusocial. We find no evidence that either global expansions or variation within individual ortholog groups in DNA methylation are consistently associated with the evolution of social behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of DNA Methylation across Insects

DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is conco...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Association study between DNA methylation and genetic variation of APOE gene with the risk of coronary artery disease

Coronary artery disease (CAD) is a common health problem with a high rate of disability and death. Dyslipidemia and altered metabolism of Apo-lipoproteins are involved in the CAD pathogenesis. The current study investigated two common polymorphisms (rs429358 and rs7412) and promoter DNA methylation status of APOE in the Iranian CAD patients and control subjects. Two hundred angiographi...

متن کامل

The Nicrophorus vespilloides genome and methylome, a beetle with complex social behavior

20. CC-BY 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. Abstract 22 Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of 23 genomes available for comparison spanning multiple independent lineages. For example, complex social 24 behavior in insects ha...

متن کامل

Mycobacterium avium subsp. paratuberculosis induces differential cytosine methylation at miR-21 transcription start site region

Mycobacterium aviumsubspecies paratuberculosis (MAP), as an obligate intracellular bacterium, causes paratuberculosis (Johne’s disease) in ruminants. Plus, MAP has consistently been isolated from Crohn’s disease (CD) lesions in humans; a notion implying possible direct causative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017